The Development of the IUPAC InChI Chemical Structure Standard

Stephen Heller NIST

&

InChl-Trust Project Director

steve@inchi-trust.org

The main web sites for the IUPAC InChI project are:

http://www.iupac.org/inchi

and

http://www.inchi-trust.org

9/8/2015

Slides are available at http://www.hellers.com/steve/PC-9-15.pdf

This is a green talk -

These slides were made from 100% recycled electrons

www.inchi-trust.org

Make no little plans; they have no magic to stir men's blood and probably themselves will not be realized. Make big plans; aim high in hope and work.

~ Daniel Burnham

(With thanks to Francis Collins, Director, NIH)

InChl Project Goal

To link everything about a chemical from many sources with the purpose of creating new information.

What is InChI?

The IUPAC International Chemical Identifier, or InChI, is a non-proprietary, machine-readable string of symbols which enables a computer to represent the compound in a completely unequivocal manner.

InChls are produced by computer from structures drawn on-screen with existing structure drawing software, and the original structure can be regenerated from an InChl with existing structure drawing software.

InChI is really just a synonym.

http://en.wikipedia.org/wiki/International_Chemical_Identifier

Unique InChl Features

Only IUPAC International structure standard

Only Open Source structure standard

Only structure standard support by a wide majority of publishers, database producers, and chemistry software companies

InChl Videos

1. What on Earth is InChl?

http://www.youtube.com/watch?v=rAnJ5toz26c

2. The Birth of the InChl

http://www.youtube.com/watch?v=X9c0PHXPfso

3. The Googlable InChlKey

http://www.youtube.com/watch?v=UxSNOtv8Rjw

4. InChI and the Islands

http://www.youtube.com/watch?v=qrCqJ0o4jGs

The InChl Team

(alphabetical order)

Stephen R. Heller
Alan McNaught
Igor Pletnev
Stephen E. Stein
Dmitrii Tchekhovskoi

Date: Mon, 15 Nov 1999 18:48:30 -0500 (EST)

From: Stephen R. Heller<srheller@cliff.nal.usda.gov>

To: stein <sstein@enh.nist.gov> Subject: Re: A strawman proposal

Steve-

First rough draft. Let's talk tomorrow about it.

Steve

11/15/99

An IUPAC Chemical Registry System

In response to the upcoming March 2000 IUPAC meeting - Representations of Molecular Structure: Nomenclature and its Alternatives - I would like to propose the creation of an IUPAC public domain chemical registry system.

• • •

Four Requirements for a Computer Representation Standard

Need
Definition/Specification
Timing/Infrastructure
Acceptance/Use

Need

There was no open source (freely available) standard method to "name" a chemical structure. That is, a method to give a structure an electronic signature – an identifier.

Organizations need a structure representation for their content (databases, journals, chemicals for sale, products, and so on) so that their content can be found and LINKED to and combined with other content on the Internet. InChI provides an excellent ROI (return on investment). InChI increases productivity!

Why InChl? - Too Many Good and Excellent Identifiers ("Standards")

Structure diagrams
- various conventions
- contain 'too much' information

Connection Tables/Notations
- MolFiles, SDF, SMILES, SLN, ROSDAL, ...

Pronounceable names (and mostly unpronounceable) and mostly complex names - IUPAC, CAS 8th CI name, CAS 9th CI name, trivial, trade, WHO INN, ASK, ISO

(Dumb) Index Numbers

EINECS, ELINCS, FEMA, DOT, RTECS, CAS, Beilstein, USP, RTECS, EEC, RCRA, NCI, UN, USAN, EC, ChemSpider ID, REACH, PubChem CID, BAN, NSC, ASK, KEGG, BP, IND, MARTINDALE, MESH, IT IS, RX-CUI, NDF-RT, ATC, AHPA, USP/NF, UNII, MFCD#, and so on

"Standards are like toothbrushes – everyone has one but no one wants to use someone else's."

Phil Bourne,
Associate Director for Data Science, NIH

Definition/Specification

A computer algorithm to insure consistency and reproducibility.

The InChI representation and algorithms are not new. They are just a further, well thought out and tested (minor) improvements on graph theory which is some 300 years old. It started with a publication by the Swiss mathematician Euler and has been applied to chemical structures in the mid 20th century. The Euler graph was made up of lines (bonds) and nodes (atoms).

http://en.wikipedia.org/wiki/Graph_theory & http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

What "is" the InChl standard?

The InChI standard programmed into the algorithm is an arbitrary decision as to how structures are handled. In most cases there is total agreement (e.g., methane). In cases of more complex molecules where there is not agreement among chemists, one representation is chosen. As long as the arbitrarily chosen representation is properly programmed, one will always get the SAME result using it – which is what a standard is!

InChl layered structure design

The current InChI layers are:

- 1. Formula
- 2. Connectivity (no formal bond orders)
 - a. disconnected metals
 - b. connected metals
- 3. Isotopes
- 4. Stereochemistry
 - a. double bond (Z/E)
 - b. tetrahedral (sp3)
- 5. Tautomers (on or off)

Charges are added to end of the string

The InChI Algorithm normalizes chemical representation and includes a "standardized" InChI, and the 'hashed' form called the InChIKey

InChI Characteristics

- 1. Easy to generate
- 2. Expressive (it will contain structural information)
 - 3. Unambiguous/Unique
- 4. Does not require a centralized operation (it can be generated anywhere can use crowdsourcing/free labor)
- 5. Easy to search for structure via Internet search engines (Google, Yahoo, Bing, etc.) using the InChI (hash) Key.

InChl is for computers

An InChI string is not directly intelligible to the normal human reader. Like Bar Codes, and InChI QR codes - InChIs are not designed to be read by humans.

Or, put another way – never send a human to do a machine's job!

Technology is at its best when it is invisible.

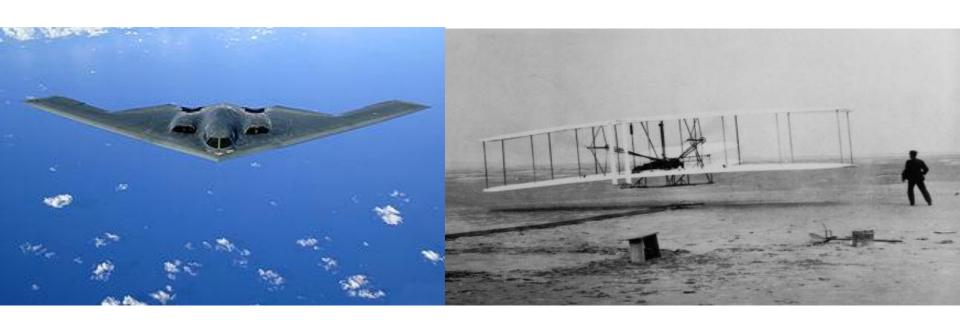
How difficult is it to create an InChl?

Today, all the major structure drawing programs (ChemDraw, MDL/Symyx /Accelrys/BIOVIA Draw, ISIS Draw, ChemAxon Marvin Sketch, ACD Labs ChemSketch, CLiDE, Jmol, and so on) have incorporated the InChI algorithm in their products, with usually an "InChI" button for generating the InChI.

An Open Source system keeps us on our toes. If things don't work or we don't respond as needed InChI won't remain a standard.

InChl is the worst computer readable structure representation except for all those other forms that have been tried from time to time.

With apologies to Sir Winston Churchill (House of Commons speech on November 11, 1947)


Timing/Infrastructure

InChI has become a standard only because of the world has changed in the last 20 years.

Without the Internet, without vast amounts of data and information becoming available in computer readable form for the first time, without Google (and other search engines), without structure drawing programs, and with most chemistry publishers now needing chemical structures in their products, InChI would be yet another interesting graph theory project that died like so many before it.

Without this perfect good storm that created a foundation for InChI, at best, I would be talking to a group a 5-7 people at ACS meeting talk.

InChl Technology

Other Technology

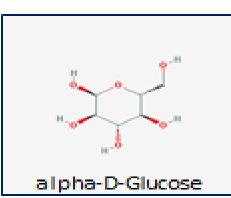
Acceptance/Use

Easier said than done



3 countries not using the Metric System

Only One US Highway uses the Metric System



What about SMILES as a standard?

C([C@@H]1[C@H]([C@@H]([C@H](O1)O)O)O)O

- SMILES is a popular line notation
 - But not a published standard

- Every vendor has its own implementation
 - Differences in aromaticity models can lead to structure corruption
- Cannot reliably compare strings
 - Different software packages can make different strings for same structure
- No structure normalization
 - Different structural representations can yield different strings

Slide from Evan Bolton – NIH/PubChem

Re: [CHMINF-L] Inchi and chemical databases

You forwarded this message on 9/15/2010 5:37 PM.

CHEMICAL INFORMATION SOURCES DISCUSSION LIST [CHMINF-L@LISTSERV.INDIANA.EDU] on behalf of Ian A Watson

Sent: Wednesday, September 15, 2010 3:24 PM

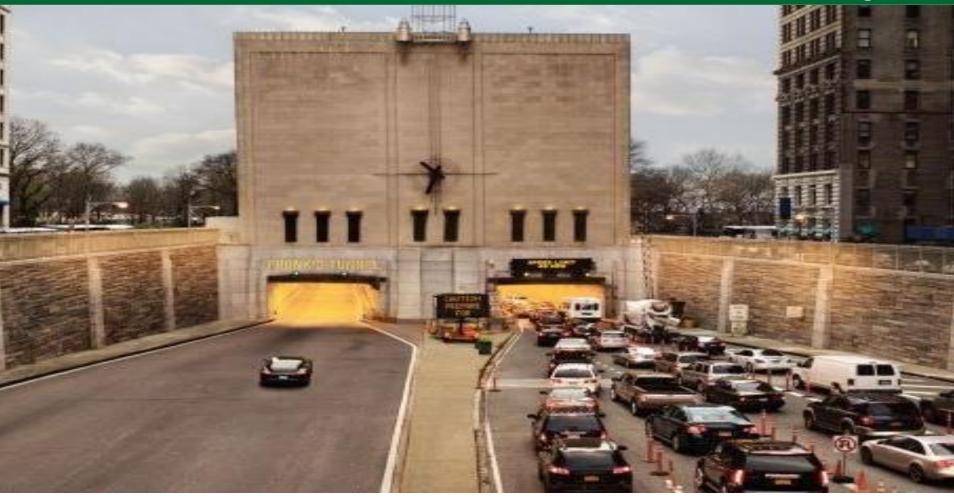
To: CHMINF-L@LISTSERV.INDIANA.EDU

Interesting example of Caffeine smiles on the web site. I was able to generate 172 different smiles for the Caffeine molecule (email me if you'd like them). Presumably each one of these could be a unique smiles in somebody's implementation.

But when I converted each of those 172 different smiles to InChI, I got the exact same InChI string for each one. That's exactly how things are supposed to work. Nice.

Ian Watson

c1(=0)c2c(n(C)c(=0)n1C)ncn2C c12c(n(C)c(=0)n(C)c1=0)ncn2C O=c1n(C)c(=O)c2c(ncn2C)n1C Cn1c2c(nc1)n(C)c(=0)n(C)c2=0 c12c(ncn1C)n(C)c(=0)n(c2=0)C O=c1c2c(ncn2C)n(c(=0)n1C)C c12c(n(cn1)C)c(=0)n(C)c(=0)n2C Cn1c2c(nc1)n(c(=0)n(c2=0)C)C c12c(ncn1C)n(c(=0)n(C)c2=0)C c12c(ncn1C)n(C)c(=0)n(C)c2=0 Cn1c(=0)n(C)c(=0)c2c1ncn2Cn1(c2c(nc1)n(C)c(=0)n(C)c2=0)C c12c(n(C)cn1)c(=0)n(c(=0)n2C)C Cn1c(=0)c2c(ncn2C)n(c1=0)C n1cn(C)c2c1n(c(=0)n(c2=0)C)C n1cn(c2c1n(C)c(=0)n(c2=0)C)C c12c(c(=0)n(c(=0)n1C)C)n(C)cn2 c1nc2c(n1C)c(=0)n(C)c(=0)n2C c1(=0)n(C)c(=0)c2c(ncn2C)n1C O=c1n(c(=O)c2c(ncn2C)n1C)C Cn1cnc2c1c(=0)n(C)c(=0)n2C n1(c(=0)n(c(=0)c2c1ncn2C)C)C c1(=0)n(C)c(=0)c2c(n1C)ncn2C O=c1n(c2c(n(cn2)C)c(=0)n1C)C Cn1c2c(n(cn2)C)c(=0)n(c1=0)CCn1c(=0)c2c(n(c1=0)C)ncn2C Cn1cnc2c1c(=0)n(c(=0)n2C)C c1nc2c(c(=0)n(C)c(=0)n2C)n1C c12c(ncn1C)n(c(=0)n(c2=0)C)C c1nc2c(n1C)c(=0)n(c(=0)n2C)C Cn1c2c(n(cn2)C)c(=0)n(C)c1=0 n1(C)c2c(n(C)c(=0)n(c2=0)C)nc1 n1(C)c2c(nc1)n(C)c(=0)n(c2=0)C n1(c(=0)c2c(n(c1=0)C)ncn2C)C n1(c(=0)c2c(n(C)c1=0)ncn2C)C Cn1c(=0)n(c2c(c1=0)n(C)cn2)C n1(C)c(=0)n(C)c(=0)c2c1ncn2C c1(=0)n(c(=0)c2c(ncn2C)n1C)C n1(cnc2c1c(=0)n(c(=0)n2C)C)C n1(C)c(=0)n(C)c2c(n(cn2)C)c1=0 n1(c2c(n(cn2)C)c(=0)n(C)c1=0)C n1(C)cnc2c1c(=0)n(C)c(=0)n2C O=c1c2c(n(C)c(=O)n1C)ncn2C n1(c2c(nc1)n(c(=0)n(c2=0)C)C)C n1(C)c(=0)c2c(n(c1=0)C)ncn2C n1(c2c(c(=0)n(C)c1=0)n(cn2)C)C c12c(n(c(=0)n(c1=0)C)C)ncn2C n1cn(C)c2c1n(C)c(=0)n(c2=0)Cc12c(c(=0)n(C)c(=0)n1C)n(cn2)C Cn1c2c(n(C)cn2)c(=0)n(c1=0)Cn1(c(=0)n(C)c2c(n(cn2)C)c1=0)C n1cn(c2c1n(C)c(=0)n(C)c2=0)C c1(=0)n(c2c(c(=0)n1C)n(C)cn2)C Cn1c(=0)n(c(=0)c2c1ncn2C)CO=c1n(c(=O)n(c2c1n(cn2)C)C)C n1(c2c(c(=0)n(c1=0)C)n(C)cn2)C c12c(n(cn1)C)c(=O)n(c(=O)n2C)C c12c(c(=0)n(C)c(=0)n1C)n(C)cn2 Cn1c(=0)c2c(n(C)c1=0)ncn2C


```
c1(=0)n(C)c2c(n(cn2)C)c(=0)n1C
O=c1n(C)c2c(c(=O)n1C)n(C)cn2
n1(C)c2c(c(=0)n(C)c1=0)n(C)cn2
n1cn(c2c1n(c(=0)n(C)c2=0)C)C
O=c1n(c(=O)n(C)c2c1n(cn2)C)C
c1(=0)c2c(n(c(=0)n1C)C)ncn2C
c1(=0)n(c2c(n(cn2)C)c(=0)n1C)C
Cn1c2c(c(=0)n(c1=0)C)n(cn2)C
c1(=0)n(c(=0)c2c(n1C)ncn2C)C
O=c1n(c(=0)c2c(n1C)ncn2C)C
n1cn(C)c2c1n(c(=0)n(C)c2=0)C
n1(c(=0)n(C)c2c(c1=0)n(C)cn2)C
O=c1c2c(ncn2C)n(C)c(=O)n1C
n1(cnc2c1c(=0)n(C)c(=0)n2C)C
n1(C)cnc2c1c(=0)n(c(=0)n2C)C
n1cn(C)c2c1n(C)c(=0)n(C)c2=0
O=c1n(C)c(=O)n(C)c2c1n(C)cn2
n1(C)c(=0)n(c2c(c1=0)n(C)cn2)C
Cn1c(=0)c2c(ncn2C)n(C)c1=0
n1(c2c(n(cn2)C)c(=0)n(c1=0)C)C
n1(C)c2c(n(C)c(=0)n(C)c2=0)nc1
Cn1c2c(n(c(=0)n(c2=0)C)C)nc1
n1(c(=0)n(C)c(=0)c2c1ncn2C)C
O=c1n(C)c2c(n(C)cn2)c(=O)n1C
n1(C)c2c(n(cn2)C)c(=0)n(C)c1=0
c1(=0)c2c(ncn2C)n(c(=0)n1C)C
O=c1n(c2c(c(=O)n1C)n(cn2)C)C
Cn1c2c(n(C)c(=0)n(C)c2=0)nc1
Cn1c2c(nc1)n(c(=0)n(C)c2=0)C
Cn1c2c(n(C)cn2)c(=0)n(C)c1=0
c12c(n(C)c(=0)n(c1=0)C)ncn2C
n1(c2c(c(=0)n(c1=0)C)n(cn2)C)C
c1(=0)n(C)c(=0)n(c2c1n(cn2)C)C
n1(c2c(n(C)cn2)c(=0)n(c1=0)C)C
c1(=0)n(c2c(n(C)cn2)c(=0)n1C)C
n1(c2c(nc1)n(C)c(=0)n(c2=0)C)C
Cn1c2c(nc1)n(C)c(=0)n(c2=0)C
c12c(c(=0)n(c(=0)n1C)C)n(cn2)C
Cn1c2c(n(c(=0)n(C)c2=0)C)nc1
c1(=0)n(c(=0)n(C)c2c1n(C)cn2)C
c1(=0)n(C)c2c(n(C)cn2)c(=0)n1C
n1(c(=0)c2c(ncn2C)n(C)c1=0)C
n1(c2c(n(C)c(=0)n(C)c2=0)nc1)C
O=c1n(c2c(n(C)cn2)c(=O)n1C)C
c1(=0)n(C)c(=0)n(C)c2c1n(C)cn2
Cn1c(=0)n(c2c(c1=0)n(cn2)C)C
n1(c2c(n(c(=0)n(C)c2=0)C)nc1)C
Cn1c2c(c(=0)n(c1=0)C)n(C)cn2
c1(=0)n(C)c2c(c(=0)n1C)n(cn2)C
O=c1n(C)c2c(c(=O)n1C)n(cn2)C
c1(=0)n(C)c(=0)n(c2c1n(C)cn2)C
Cn1c(=0)n(C)c2c(n(C)cn2)c1=0
n1(c2c(nc1)n(c(=0)n(C)c2=0)C)C
O=c1n(c(=0)n(c2c1n(C)cn2)C)C
O=c1n(C)c(=O)n(C)c2c1n(cn2)C
c1(=0)n(C)c2c(c(=0)n1C)n(C)cn2
c1(=0)n(c(=0)n(C)c2c1n(cn2)C)C
n1(C)c(=0)c2c(ncn2C)n(C)c1=0
Cn1c(=0)n(c2c(n(C)cn2)c1=0)C
```

www.inchi-trust.org

O=c1c2c(n(c(=O)n1C)C)ncn2C O=c1n(C)c2c(n(cn2)C)c(=O)n1C n1(C)c(=0)n(c2c(n(C)cn2)c1=0)C n1(C)c2c(c(=0)n(c1=0)C)n(cn2)C Cn1c2c(c(=0)n(C)c1=0)n(C)cn2 c1(=0)n(c2c(c(=0)n1C)n(cn2)C)C n1(c2c(n(C)c(=0)n(c2=0)C)nc1)C n1(c2c(c(=0)n(C)c1=0)n(C)cn2)Cn1(C)c(=0)c2c(ncn2C)n(c1=0)C Cn1c(=0)n(C)c2c(n(cn2)C)c1=0 O=c1n(C)c(=O)c2c(n1C)ncn2C n1(c(=0)n(c2c(c1=0)n(cn2)C)C)C O=c1n(c(=O)n(C)c2c1n(C)cn2)C n1(C)c(=0)n(c2c(n(cn2)C)c1=0)C n1(c(=0)n(C)c2c(n(C)cn2)c1=0)Cc1(=0)n(C)c(=0)n(C)c2c1n(cn2)C n1(c(=0)n(C)c2c(c1=0)n(cn2)C)C O=c1n(C)c(=O)n(c2c1n(cn2)C)C n1(c(=0)c2c(ncn2C)n(c1=0)C)C c1(=0)c2c(ncn2C)n(C)c(=0)n1C Cn1c2c(n(C)c(=0)n(c2=0)C)nc1 n1(C)c(=0)c2c(n(C)c1=0)ncn2C n1(C)c(=0)n(C)c2c(c1=0)n(C)cn2 Cn1c2c(c(=0)n(C)c1=0)n(cn2)C n1(C)c(=0)n(C)c2c(n(C)cn2)c1=0 n1(c2c(n(C)cn2)c(=0)n(C)c1=0)Cn1(C)c(=0)n(c(=0)c2c1ncn2C)C c1(=0)n(c(=0)n(c2c1n(cn2)C)C)C c1(=0)n(c(=0)n(c2c1n(C)cn2)C)C n1(C)c2c(nc1)n(c(=0)n(C)c2=0)C Cn1c(=0)n(C)c2c(c1=0)n(C)cn2 O=c1n(c2c(c(=O)n1C)n(C)cn2)C n1(C)c2c(n(c(=0)n(c2=0)C)C)nc1 n1(C)c(=0)n(C)c2c(c1=0)n(cn2)C n1(C)c2c(nc1)n(C)c(=0)n(C)c2=0 n1(C)c2c(n(cn2)C)c(=0)n(c1=0)C n1(C)c(=0)n(c2c(c1=0)n(cn2)C)Cn1(C)c2c(c(=0)n(C)c1=0)n(cn2)C n1(c(=0)n(c2c(n(C)cn2)c1=0)C)Cn1(c(=0)n(c2c(c1=0)n(C)cn2)C)C n1(C)c2c(n(C)cn2)c(=0)n(C)c1=0 n1(C)c2c(c(=0)n(c1=0)C)n(C)cn2 n1(C)c2c(n(c(=0)n(C)c2=0)C)nc1

n1(C)c2c(nc1)n(c(=0)n(c2=0)C)C

www.inchi-trust.org

InChl

172 SMILES representations

E Pluribus Unum Out of many, One

Whatever the controversies and different opinions, InChI has now been more widely adopted than SMILES. In addition three US Government agencies - FDA, NIH, NIST - now have become paying members of the InChI Trust which would seem to indicate more official and institutional support leading to further widespread usage.

Current InChl Status

At present, practically speaking, InChI can handle simple organic molecules, which turns out to cover 99%+ of what people deal with every day. If it did not the every day needs of chemists and information specialists then the usage of InChI would not be as great as it is.

Large Databases with InChls/InChlKeys

NIH/NCI – 110 million
NIH/PubChem - 91 million (68 million online)
EBI UniChem – 91 million
RSC/ChemSpider – 34 million
Elsevier/Reaxys – 30 million

How did InChl succeed?

This project was the perfect "good" storm. The project came about in 1999 when Steve Heller retired and his wife threatened him with divorce unless he found some to do. (Yes, behind every successful project is a woman.) IUPAC discovered that nomenclature was for 20th, not 21st century. NIST, the US standards agency, needed a way to represent and link the structures from its standard property databases. The Internet (web 2.0) was taking off enabling silos and islands of information to be linked and searched if only there was a linking element. Publishers and database producers realized their information would be more valuable (i.e., they could sell more to more people) if only there was a way to link chemical structures from all the diverse resources on the Internet. With no funds to support the project, IUPAC needed the private sector to pay for the short and long term project needs. Lastly, the decentralized structure and hands-off management of the project enabled all the expert egos to be satisfied by putting everyone in charge of what they do best and giving them the final say - allowing for proper, scientific, bottom-up decisions.

Why is InChI a Success

InChl is able to put things together in a new way. We took IUPAC, the Internet, Open Source software, crowdsourcing (SourceForge), Graph theory, existing representation algorithms, digitized data available on the web, and search engines, combines them, and created a very valuable tool.

InChl only works because of new technology. Without these factors above, for all practical purposes, no one would even know InChl existed.

InChl is an agent of change

Success is uncoerced adoption

InChl is not a replacement for any existing internal structure representations. InChl is in ADDITION to what one uses internally. Its value to the USPTO is in FINDING and LINKING information

Internal

Your representation (e.g. WLN, SMILES) Your format(s)

External

Same representation (Standard InChl/InChlKey)
Same one format

InChI is an international computer readable standard not just for chemists, but rather has very wide technical and non-technical use for linking and connecting information in many areas of scientific and everyday activities --

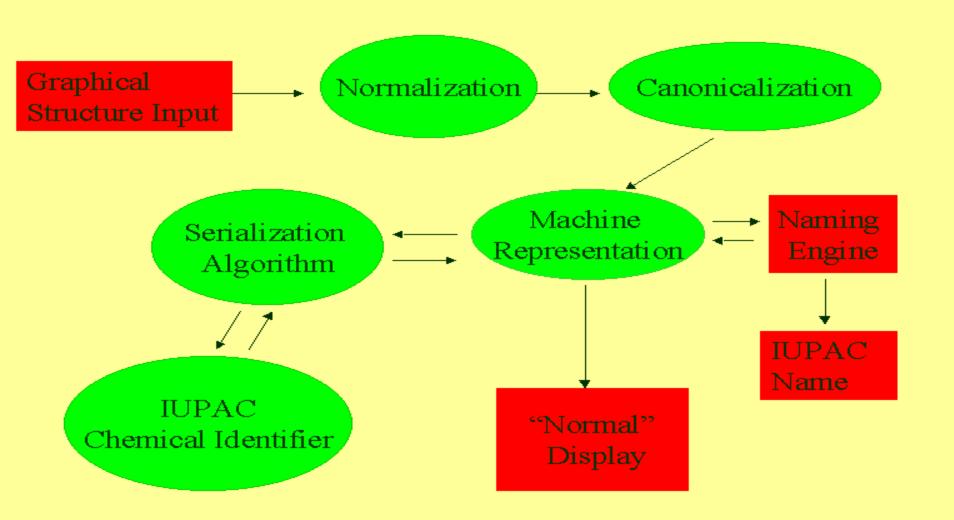
abstracting services biology/genomics databases bio-activity databases books chemical spills chemistry databases clinical trials company annual reports drug information drug overdoses electronic books environmental information food additives lawsuits magazines medical information medical records newspapers patents packages/bottles/transportation labels/ everyday product labels scientific journals toxicological information

InChl Staff and Collaborators

The InChI project has had the unusual perfect "good storm" of cooperation and support. It is a truly international project with programming in Moscow, computers in the cloud, incorporated in the UK, and a project director in the USA. Collaborators from over a dozen countries, from academia, Pharma, publishers, and the chemical information industry, have all offered, and continue to offer, senior scientific staff to develop the InChI standard.

Critical words/phrases for InChl

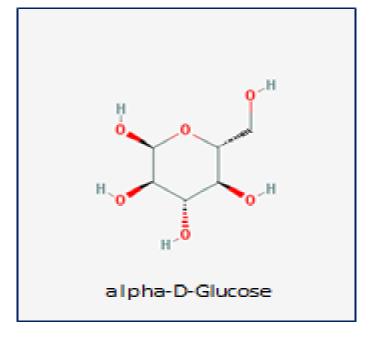
Link
Addition; not replacement
Algorithm
Synonym
No bureaucracy/Almost no staff
Decentralized
A Bottoms Up Project



InChl as a web index for molecules

"We have now discovered, serendipitously, that these InChIs have been comprehensively and accurately indexed by the Google search engine. From preliminary exploration it appears that every known document in which an InChI appears has been indexed and that all are retrievable by standard queries with virtually 100% precision. This means that standard Web-based indexers, without any alteration, are capable of acting as completely precise chemical search engines. Although we have many years of developing chemistry on the web, this was an unexpected and very welcome finding"

Murray-Rust et al. 2004 http://lists.w3.org/Archives/Public/public-swls-ws/2004Oct/att-0019/


InChl is a string

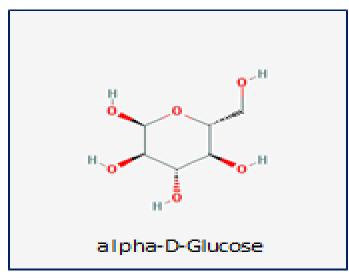
InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-

,3-,4+,5-,6+/m1/s1

Version/Type
Chemical formula
Connectivity
Charge/Proton
Stereochemical
Other (e.g., Isotopic)

"layered" line notation

InChI for Maitotoxin (from Nextmove Software, UK)


InChlKey is a "hashed" InChl

- Search engine friendly InChl
- May allow for 'secure' lookup of a chemical

WQZGKKKJIJFFOK-DVKNGEFBSA-N

Chemical formula
Connectivity
Stereochemical
Other (e.g., Isotopic)
Type
Version
Charge/Proton

"layered" line notation

InChlKey can be a 'secret'

InChI=1S/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6+/m1/s1

WQZGKKKJIJFFOK-DVKNGEFBSA-N

There is no chemical information in an InChIKey ... if you do not know the InChI, you cannot convert the InChIKey back into a chemical structure

Slide from Evan Bolton/NIH/PubChem

InChI=1S/C8H10N4O2/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H.1-3H3 (caffeine)

character indicating the number of protons ('N' means neutral)

InChikev=RYYVLZVUVIJVGH-UHFFFAOYSA-N

ev=RYYVLZV

First block (14 letters)

Encodes molecular skeleton (connectivity) Second block (8 letters)

Encodes stereochemistry and isotopes

flag character for InChI version: 'A' for version 1

flag character ('S') indicates standard InChlKey (produced out of standard InChl)

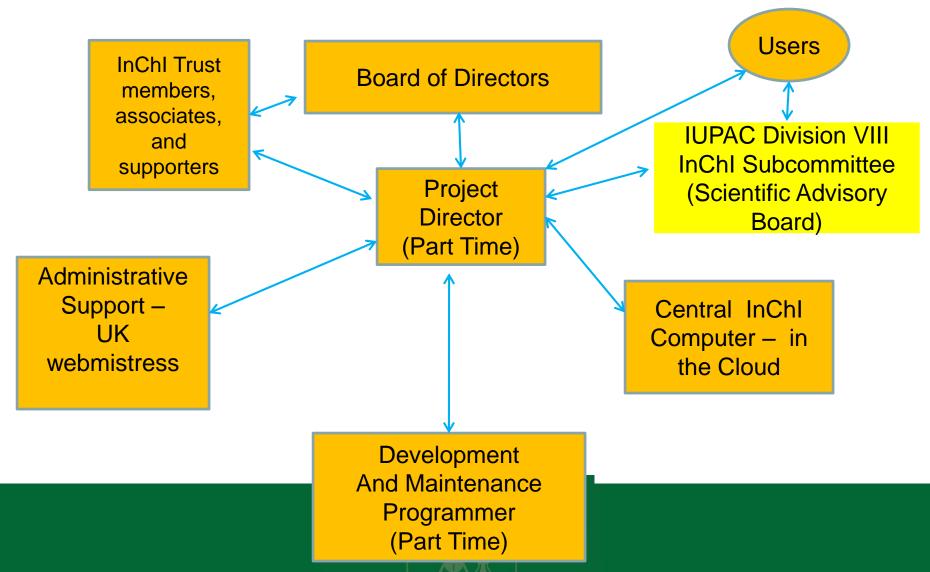
www.inchi-trust.org

What about funding?

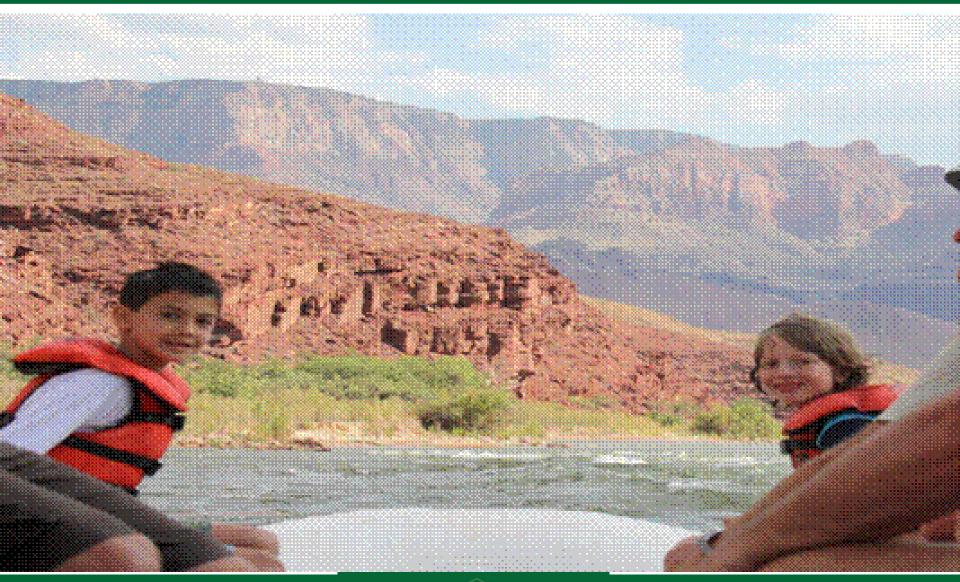
Don't give up - Moses was once a basket case

While InChI did not make the top 10, it is #14

(Thou shall use InChl for structure representation.)



The InChl Trust


To function and succeed, InChI had to become personality independent. InChI had to be "institutionalized". If the work of this project was to be enduring it needed to turned over to an entity that would ensure its ongoing activities and be acceptable to the community. It was concluded that a not-for-profit organization would best fit the ongoing and future project needs. Thus the decision to create and incorporate the "InChI Trust" as a UK charity.

InChl Trust Organization

www.inchi-trust.org

InChITRUST

Bypassing IUPAC procedures

The usual very lengthy IUPAC approval process was hijacked and sped up by sending the IUPAC bureaucracy, not a white paper with InChI rules, but rather the coding of these rules which were unreadable and unintelligible C code to non-programmers.

InChl Trust Members & Associates

Members:

Informa/Taylor & Francis
IUPAC
John Wiley & Sons
Nature
Royal Society of Chemistry
US National Institutes of Health

Associates:

ACD Labs
ChemAxon
IBM Research
OpenEye
Springer

Perkin-Elmer Informatics

US Food and Drug Administration

US National Institute of Standards and Technology

Supporters:

AKos Consulting and Solutions (Alexander Kos)

American Chemical Society Division of Chemical Information (CINF) (Carmen Nitsche)

Biochemfusion ApS (Jan Holst Jensen)

Caltech Library Services, Pasadena, CA, USA (Dana Roth)

Cambridge Crystallographic Data Centre (lan Bruno)

Chemistry Department, Clemson University, SC, USA (Stephen Creager)

Chemistry Department, University of Arkansas at Little Rock (Robert Belford)

Chemistry Department, University of California, Riverside, CA, USA (Chris Reed)

ChrisDS Consulting Limited (Chris Southan)

Computational Drug Design Systems LLC (CODDES) (Iwona Weidlich)

eADMET (Igor Tetko)

Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA (Alex Tropsha)

ETH Zürich, Chemistry Biology Pharmacy Information Center, Switzerland (Martin Brändle)

Faculty of Science, University of Paderborn, Germany (Gregor Fels)

Gesellschaft Deutscher Chemiker e.V. (GDCh), Germany (Wolfram Koch)

Imperial College London, UK (Henry Rzepa)

Institute for Chemoinformatics and Bioinformatics, University of Applied Sciences Gelsenkirchen, Recklinghausen Section, Germany (Achim Zielesny)

Institute of Chemical Technology, Prague, Czech Republic (Jiri Jirat)

Institute of Organic Chemistry, KIT Karlsruhe (Nicole Jung)

International Union of Crystallography (Peter Strickland)

Leadscope, Columbus, OH, USA (Michael Conley)

Leibniz-Institut für Analytische Wissenschaften - ISAS, Dortmund, Germany (Albert Sickmann)

Ludwig-Maximilians-Universität München, Munich, Germany (Thomas Engel)

Molecular Materials Informatics, Inc (Alex Clark)

National Center for Biomedical Ontology, Stanford University, CA, USA (Mark Musen)

National Chemical Laboratory, Pune, India (Muthukumarasamy Karthikeyan)

National Institute of Chemistry, Ljubljana, Slovenia (Dusanka Janezic)

NextMove Software, Santa Fe, NM, USA (Roger Sayle)

Open Babel (Noel O'Boyle)

Royal Netherlands Chemical Society (Martin Post)

School of Chemistry, University of Leeds, UK (Peter Johnson)

SciencePoint, Redmond, WA, USA (Rudy Potenzone)

Scientific Thinking LLC (Mitchell Miller)

SimBioSys (Aniko Simon)

Sociedad Cubana de Química, Cuba (Roberto Cao)

StructurePendium Technologies GmbH (Gerd Blanke)

Technical University of Vienna, Austria (Ulrich Jordis)

The Chem21 Group, Inc., Lake Forest, IL, USA (Tony Hopfinger)

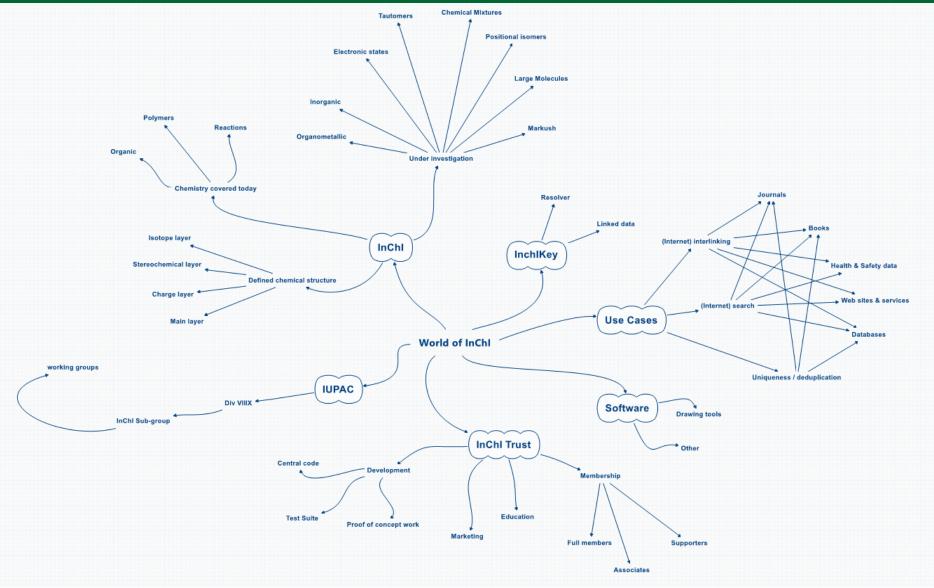
The Chemistry Development Kit, Eindhoven, The Netherlands (Egon Willighagen)

Trinity University, San Antonio, TX, USA (Steven Bachrach)

Unilever Centre for Molecular Science Informatics, Cambridge University, UK (Robert Glen)

University of California, Davis, Genome Center, CA, USA (Oliver Fiehn)

University of Indiana, Bloomington, IN, USA (David Wild)


University of Southampton (Chemistry), UK (Jeremy Frey)

University of the West Indies, Mona Campus, Jamaica (Robert Lancashire)

US Association of Public Health Laboratories (Megan Latshaw)

Xemistry GmbH, Königstein, Germany (Wolf-Dietrich Ihlenfeldt)

www.inchi-trust.org

InChI characteristics

Consensus
Technical competence
Political and technical cooperation
Precompetitive collaboration – publishers, databases, software
No competition with commercial products
No mission creep
IUPAC blessing/endorsement & rapid IUPAC acceptance
Excellent understanding of what the Internet and how it can be effectively used in Chemical Information

Vision of the future

The Future

InChl has become mainstream for publishers, databases providers, and software developers. Over the next 5-10 years, publishers will use data mining to create both better abstracts, useful indexing, and concept terms. Search engines will be able to search for appropriate text and structures and direct users to the original (fee or free/Open Access/Open Data) sources.

Keep Calmand Use InChl

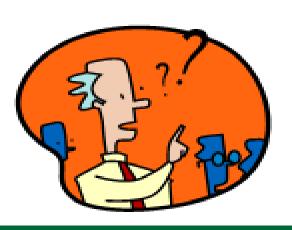
Summary

If you are not part of the solution; you are part of the precipitate

Acknowledgements

(Primarily members for the IUPAC InChI subcommittee and associated InChI working groups)

Steve Bachrach, Colin Batchelor, John Barnard, Evan Bolton, Steve Boyer, Steve Bryant, Szabolcs Csepregi, Rene Deplanque, Gary Mallard, Nicko Goncharoff, Jonathan Goodman, Guenter Grethe, Richard Hartshorn, Jaroslav Kahovec, Richard Kidd, Hans Kraut, Alexander Lawson, Peter Linstrom, Bill Milne, Gerry Moss, Peter Murray-Rust, Heike Nau, Marc Nicklaus, Carmen Nitsche, Matthias Nolte, Igor Pletnev, Josep Prous, Peter Murray-Rust, Hinnerk Rey, Ulrich Roessler, Roger Schenck, Martin Schmidt, Steve Stein, Peter Shepherd, Markus Sitzmann, Chris Steinbeck, Keith Taylor, Dmitrii Tchekhovskoi, Bill Town, Wendy Warr, Jason Wilde, Tony Williams, Andrey Yerin.


Special Acknowledgement: Ted Becker& Alan McNaught for their vision and leadership of the future of IUPAC nomenclature.

Have any questions?

If you think of a question later, email me:

steve@inchi-trust.org

